Competing Metal-Metal Bonding in Heterometallic Complexes of Cold and Mercury. Synthesis of Contrasting Fe-Au-Au-Fe and Fe-Hg-Fe Complexes

Pierre Braunstein' and Michael Knorr

Laboratoire de Chimie de Coordination, URA 416 CNRS, Universite Louis Pasteur, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France

Antonio Tiripicchio and Marisa Tiripicchio Camellini

Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, 43100 Parma, Italy

Received February 26, 1992

By contraction of the **s** (and p) orbitals and expansion of the d orbitals, relativistic effects promote metal-metal interactions between gold atoms even with a $5d^{10}$ closed-shell electronic configuration.¹ Tangential bonding in gold complexes^{2a} results in the marked "aurophilic attraction"^{2b} which has become a salient feature of recent experimental³ and theoretical studies.⁴ Yet, more comparative experimental data are desirable to better understand how these effects influence the chemistry (structure and reactivity) of Au^I vs its neighbor Hg^{II}, another 5d¹⁰ closedshell ion. Whereas Hg transition metal complexes and clusters are numerous,⁵ only few structures are known in which tangential Hg-Hg bonding occurs.⁶ We report on the marked differences observed between the new FeAu and Fe-Hg complexes [AuFe- ${\rm [Si(OMe)_3(CO)_3(\mu\text{-}dppm)]_2 (2) (dppm = Ph_2PCH_2PPh_2)}$ and $Hg[Fe(Si(OMe)₃](CO)₃(dppm-P)]₂(3)$, respectively, which are due to the preference in the former for Au-Au rather than Au-Fe bonding.

We reacted $[Bu_4N][AuX_2]$ $(X = Cl, Br)$ with 2 equiv of the dppm-substituted silyliron metalate $K[Fe{Si(OMe)}_3]$ (CO)₃-(dppm-P)] (K[m]) **(l),'** anticipating the formation of a [m-Au-m]- chain. However, a complex analyzing for Au[m] **(2)** was obtained instead (Scheme **I)*** and it was also formed when only 1 equiv of 1 was used. Its ³¹P{¹H} NMR spectrum contains a doublet of doublets, characteristic for the presence of Au- and Fe-bound P atoms coupled to each other $(2+3J(P, P)) =$ 43.4 Hz), which is further split by an additional coupling of 14.8

- (1) Pyykkö, P. Chem. Rev. 1988, 88, 563 and references therein.
(2) (a) Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1976, 1163. (b)
- (2) (a) Mingos, D. M. P. *J. Chem. Soc., Dalton Trans.* 1976, 1163. (b) Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1544.
- (3) (a) Schmidbaur, H. Gold Bull. 1990, 23, 11. (b) Salter, I. **D.** Ado. Organomet. Chem. 1989, 29, 249. (c) Braunstein, P.; Rosé, J. Gold Bull. 1985. *18.* 17 and references cited. (d) Alvarez, S.; Rossell, 0.; Seco, M.; Valls, J.; Pellinghelli, M. A.; Tiripicchio, A. *Organometallics*
1991, *10*, 2309 and references cited. (e) Payne, N. C.; Ramachandran,
R.; Treurnicht, I.; Puddephatt, R. J. *Ibid.* 1990, 9, 880. (f) Khan, Md. N. I.; King, C.; Heinrich, **D. D.;** Fackler, J. P., Jr.; Porter, L. C. Inorg. Chem. 1989, 28, 2150. (g) Raptis, R. **G.;** Fackler, J. P., Jr.; Murray, H. H.; Porter, L. C. Ibid. 1989, 28, 4057.
- (4) (a) Pyykkö, P.; Zhao, Y. Angew. Chem. 1991, 103, 622; Angew. Chem., *Int. Ed. Engl.* 1991, 30, 604. (b) Jiang, Y.; Alvarez, S.; Hoffmann, R. Inorg. Chem. 1985, 24, 749 and references cited in these papers.
- (5) See for example: (a) Charalambous, E.; Gade, L. H.; Johnson, B. F. G.; Kotch, T.; Lees, A. J.; Lewis, J.; McPartlin, M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1137. (b) Braunstein, P.; Rosé, J.; Tiripicchio, A.; Tiripicchio Camellini, M. *J.* Chem. *SOC.,* Dalton Trans. 1992,911 and references cited.
(6) See, for example: Gäde, W.; Weiss, E. Angew. Chem., Int. Ed. Engl.
- 1981, 20, 803. Albinati, A.; Moor, A.; Pregosin, P. S.; Venanzi, L. M. *J.* Am. Chem. *SOC.* 1982,104,7672. Kergoat, R.; Kubicki, M.;Guerchais, J.-E.; Norman, N. C.; Orpen, A. *G.* J. Chem. *SOC.,* Dalton Trans. 1982, 633. Cecconi, F.; Ghilardi, C. A,; Midollini, S.; Moneti, S. Ibid. 1983, 349. Ragosta, J. M.; Burlitch, J. M. *J.* Chem. *SOC.,* Chem. Commun. 1985, 1187. Gade, L. H.; Johnson, B. F. *G.;* Lewis, J.; McPartlin, M.; Kotch, T.; Lees, A. J. J. *Am.* Chem. *SOC.* 1991, I13.8698 and references cited.
- (7) (a) Braunstein, P.; Knorr, M.; Schubert, **U.;** Lanfranchi, M.; Tiripicchio, A. *J.* Chem. *SOC.,* Dalton Trans. 1991, 1507. (b) Braunstein, P.; Knorr, M.; Villarroya, 8. E.; Fischer, J. New *J.* Chem. 1990. *14,* 583 and references cited.

Hz. In addition to the methoxy resonance at δ 3.61 (¹H NMR at 333 K), a broad triplet is found at δ 3.23 for the PCH₂ protons. It broadens further when the temperature is lowered, indicating a dynamic behavior for this molecule. The crystal structure of the CH2C12 solvate of complex **210** revealed that a dimer (Au- $[m])_2$ had formed, as a result of additional Au-Au bonding and partial migration of the dppm ligand (Scheme I). The dimeric complex has an approximate C_2 symmetry, and the Fe-Au-Au-Fe chain possesses a Z shape (Figure l), with the pairs of atoms $Fe(1)$ and $Au(2)$ and $Fe(2)$ and $Au(1)$ each bridged by a dppm ligand, thus forming two unusual, twisted six-membered rings fused along the Au-Au edge (core of a tetraphosphatetrametalladecaline). The coordination geometry about the Fe atom may be described as distorted octahedral with the P and Si atoms trans to one another and the CO ligands in a *mer* arrangement. Alternatively, if one ignores the Fe-Au bond, it may be viewed as trigonal bipyramidal, a geometry consistent with a formally zerovalent Fe center. The Au-Fe distances are in the expected

- (10) Crystal structure determinations: $[AuFe{Si(OMe)}_3(CO)_3(\mu\text{-}dppm)]_2$ CH₂Cl₂ (2), C₆₂H₆₂Au₂Fe₂O₁₂P₄Si₂·CH₂Cl₂, *M* = 1769.79, monoclinic, space group *P*2₁/*a* (the matrix /001/010/100/ must be applied to the unit cell in order to change the space group in $P2_1/c$), $a = 32.930$ (9)
Å, $b = 17.826$ (7) Å, $c = 11.297$ (5) Å, $\beta = 90.57$ (2)°, $V = 6631$ (4)
Å³, $Z = 4, D_c = 1.773$ g cm⁻³, graphite-monochromated Mo Ka radiation, A³, $Z = 4$, $D_c = 1.773$ **g** cm⁻³, **graphite-monochromated Mo Ka radiation,**
 $\lambda = 0.710$ 73 Å, $\mu = 51.02$ cm⁻¹; **Hg[Fe(Si(OMe)**,}(CO),(dppm-P)]₂ (3), $C_{62}H_{62}Fe_2HgO_{12}P_4Si_2$, $M = 1491.52$, triclinic, space group P1 (the matrix /001/100/010/ must be applied to the unit cell in order to obtain the Niggli unit cell), $a = 12.706$ (6) **A**, $b = 22.843$ (9) **A**, $c = 12.219$ (5) **A**, $\alpha = 95.79$ (2)^o, $\beta = 114.15$ (2)^o, $\gamma = 95.44$ (2)^o, $V = 3183$ (2) A₃, $Z = 2$, $D_c = 1.556$ g cm⁻³, niobium-filtered Mo K α radiation, $\lambda = 0.710$ 73 Å, $\mu = 30.47$ cm⁻¹. The intensity data were collected at room temperature on a Philips PW 1100 (2) and a Siemens AED (3) diffractometer, using the θ -2 θ scan technique. A total of 11 218 (2) and 13 985 (3) unique reflections were measured (with θ in the range 3-24° (2) and 3-27° (3), of which 5759 (2) and 8790 (3), having $I > 2\sigma(I)$, were used in the refinement. Corrections for absorption were applied.
The structures were solved by Patterson and Fourier methods and refined by full-matrix least-squares procedures, with anisotropic thermal parameters in the last cycles of refinement for the Au, Fe, P, Si, and 0 atoms (2) and for all the non-hydrogen atom (3). The hydrogen atoms were placed at their geometrically calculated positions. The SHELX-76 and SHELXS-86 systems of computer programs were used.¹¹ The *R* and R_w values were 0.0665 and 0.0719 (2) and 0.0472 and 0.0510 (3), respectively. Furtherdetailsof thecrystal structureanalysesareavailable as supplementary material.
- (1 1) She1drick.G. M. SHELX-76. Program for **CrystalStructureDetermination,** University of Cambridge, U.K., 1976. SHELXS-86. Program for Crystal Structure Solution. Universität Göttingen, 1986.

⁽⁸⁾ All reactions were performed under purified nitrogen, **using** standard Schlenk-type techniques. Complex 2: [n-Bu₄N][AuBr₂]⁹ (0.599 g, 1.0 mmol)
mmol) was added at -40 ^oC to a solution of K[m] (0.685 g, 1 mmol) in THF (35 mL), and the mixture was stirred for 1.5 h. The yellowish solution was filtered and evaporated under reduced pressure. The residue was extracted with warm CH_2Cl_2 (30 mL), and the extract was concentrated and layered with hexane, which afforded colorless crystals after a few days at -20 °C (0.496 g, 56%). IR (CH₂Cl₂): ν (CO) 1978
(s), 1914 (vs), 1899 (vs) cm⁻¹. ¹H NMR (in CDCl₃, δ relative to SiMe₄)
(333 K): 3.23 (br t, J \approx 12 Hz, 2 H, PCH₂), 3.61 (s, 9 H, OM relative to external H₃PO₄): 27.9 [dd, $J(P,P) = 43.4$, 14.8 Hz, $P(Au)$], 58.4 [dd, $J(P,P) = 43.4$, 14.8 Hz, $P(Fe)$].

⁽⁹⁾ Braunstein, P.; Clark, R. J. H. *J. Chem. Soc.,* Dalton Trans. 1973,1845.

Figure 1. View of the molecular structure of the complex [AuFe(Si- $(\overrightarrow{OMe})_3$ $(\overrightarrow{CO})_3$ $(\mu$ -dppm)]₂·CH₂Cl₂ (2) together with the atomic num-
bering system. Selected bond distances (A) and angles (deg): Au(1)bering system. Selected bond distances (Å) and angles (deg): $Au(1) - Au(2) = 2.962$ (1), $Au(1) - Fe(1) = 2.535$ (3), $Au(2) - Fe(2) = 2.562$ (3), Au(1)-P(1) = 2.266 (6), Au(2)-P(3) = 2.294 (6), Fe(1)-Si(1) = 2.268 (8), Fe(1)-P(4) = 2.226 (6), Fe(2)-Si(2) = 2.282 (7), Fe(2)-P(2) = 2.244 (6); Fe(1)-Au(1)-P(1) = 161.7 (2), Fe(2)-Au(2)-P(3) = 164.0 (2), Fe(1)-Au(1)-Au(2) = 107.2 (1), P(1)-Au(1)-Au(2) = 87.3 (1), $Fe(2)-Au(2)-Au(1) = 104.8(1), P(3)-Au(2)-Au(1) = 88.6(1), C(1)$ Fe(1)-C(3) = 143 (1), C(1)-Fe(1)-C(2) = 108 (1), C(2)-Fe(1)-C(3) = 106 (1), P(4)-Fe(1)-Si(1) = 171.4 (3), C(4)-Fe(2)-C(6) = 150 (1), $C(4)-Fe(2)-C(5) = 103$ (1), $C(5)-Fe(2)-C(6) = 105$ (1), $P(2)-Fe$ (2) -Si (2) = 174.3 (3) .

Scheme I

range,^{3d} and the Au(1)-Au(2) separation of 2.962 (1) Å is typical for such interactions that are perpendicular (tangential) to the Fe-Au-P bonding axis $[P(1)-Au(1)-Fe(1) = 161.7 (2)°; P(3)$ -Au(2)-Fe(2) = 164.0 (2)^o].³ It is interesting to note that **2** forms a 10-membered-ring structure in which the Au-Au interaction is reminiscent of the transannular interactions which occur in organic cycles of middle size (8-12).

But why could the trinuclear chain complex $([m]-Au-[m])$ not be isolated in contrast to the behavior observed with other

Figure 2. View of the molecular structure of the complex Hg[Fe(Si- $(OMe)_3(CO)_3(dppm-P)]_2$ (3) along the pseudo- C_2 axis, together with the atomic numbering system. Selected bond distances **(A)** and angles (deg): Hg)-Fe(1) = 2.574 (1), Hg-Fe(2) = 2.576 (1), Fe(1)-Si(1) = 2.290 (3), $\text{Fe}(1)-\text{P}(1) = 2.247$ (2), $\text{Fe}(2)-\text{Si}(2) = 2.285$ (3), $\text{Fe}(2)-\text{P}(3) = 2.235$ (2); $\text{Fe}(1)-\text{Hg}-\text{Fe}(2) = 178.0$ (1), $\text{P}(1)-\text{Fe}(1)-\text{Si}(1) = 177.3$ $(1), C(1)$ -Fe (1) -C (2) = 102.6(4), C (2) -Fe (1) -C (3) = 154.9(4), C (1) - $Fe(1) - C(3) = 99.7$ (4).

carbonylmetalates?¹² Possibly its Fe-Au bond would be sufficiently labile for dissociation in $[m]$ ⁻ and $Au[m]$, in which the gold atom obviously prefers to increase its coordination by formation of a new Au-Au bonding interaction. This dimerization process would be assisted by the phosphorus atoms P(l) and P(3), which could be either bonded to gold in Au[m] or pendent, resulting for the first time, we believe, in dppm ligands bridging the *termini* atoms of a trinuclear chain. This is supported by the observation that **2** formed in small amounts *(5%,* 31P(IHJ NMR) upon dissolution of pure $[Fe(Si(OMe))_{3}(CO)_{3}(\mu$ -dppm)Au- $(PPh₃)$,^{7a} owing to partial dissociation of PPh₃. The Ag-AsPh₃

analogue of the latter complex readily dissociates AsPh₃ in solution,^{7a} resulting instead in the occurrence of an unusual μ_2 - η^2 -SiO bridge (eq 1). The preference for intramolecular stabilization of the electron-deficient Ag center over a dimerization of the type observed above with gold nicely illustrates the much lower affinity of silver for making Ag...Ag contacts. **On** electronic grounds, $Au \leftarrow O(Si)$ interactions are therefore not needed in 2. Note also that excess PPh₃ breaks the Au-Au bond of 2, yielding quantitatively [Fe{Si(OMe)₃}(CO)₃(μ -dppm)Au- $(PPh₃)$.

⁽¹²⁾ Braunstein, P.; Schubert, U.; Burgard, M. *Inorg. Chem.* **1984,23,4057** and references **cited.**

The reaction of **2** equiv of **1** with HgClz or of 1 equiv of **1** with the intermediate [Fe{Si(OMe)₃}(CO)₃(μ -dppm)HgCl]^{7b} afforded in high yield the expected¹³ chain complex $[m]-Hg-[m]$ **(3).**¹⁴

Its X-ray structure shows that it has approximate C_2 symmetry¹⁰ and confirms the linearity of the Fe-Hg-Fe array (Figure **2).** The Fe-Hg bond distances are slightly longer than those found

in neutral or anionic complexes showing a linear Fe-Hg-Fe array.15 The pendent nature of two P atoms in **3** is maintained in solution, since, even at -30 °C, no ¹J(PHg) coupling could be detected in the ³¹P{¹H} NMR spectrum. The formation and structure of **3** clearly show that there were **no** obvious reasons (e.g. steric) why its **gold** analogue would not form. Acomparison of closely related Fe-Ag^I, Fe-Au^I, and Fe-Hg^{II} systems demonstrates that the Au¹-Au¹ attraction (recent estimations are of about -30 kJ/mol^{3a,16}) represents a decisive component to the dramatic structural reorganization leading to **2.**

An interesting feature of complex **3** is the orientation of the pendent P atoms. We are currently evaluating the potential of this molecule as an assembling "ligand" of which the trinuclear core could act as a rigid spacer, imparting unique stereochemical features to its complexes.

Acknowledgment. Financial support from the CNRS (Paris) and the "Commission of the European Communities" (Contract No. ST2J-0347-C) is gratefully acknowledged.

Supplementary Material Available: Tables of crystal data and data collection and refinement details, positional parameters, anisotropic thermal parameters,and bond distancesand angles for 2 and 3 **(26** pages). Ordering information **is** given on any current masthead page.

Registry No. 1, 123674-03-3; 2, 142563-98-2; 2.CH₂Cl₂, 142632-19-7; **3**, 142563-99-3; $[Bu_4N][AuCl_2]$, 50480-99-4; $[Bu_4N][AuBr_2]$, **5048 1-01** - **¹**; [**Fe(Si(OMe)3)(CO),(p-dppm)HgCl], 142632-20-0;** Fe, **7439-89-6; Au, 7440-57-5;** Hg, **7439-97-6.**

⁽¹³⁾ Kunz, E.; Schubert, U. Chem. *Ber.* **1989, 122, 231.**

⁽¹⁴⁾ Complex 3: HgCl₂ (0.135 g, 0.5 mmol) was added at 0 °C to a solution of K[m] (0.685 g, 1 mmol) in THF (25 mL), and the mixture was stirred for **1.5** h. The yellow solution was filtered and evaporated under reduced pressure. The residue was recrystallized from toluene/hexane at **-20** OC, affording yellow, air-stable crystals of **3 (0.545 g, 73%).** IR (THF): u(C0) **1994** (m), **1965** (sh), **1939** (vs) cm-I. IH NMR (CD2CI2): **6 3.22** (br d, 2J(P,H) = **4.6** Hz, **2** H, PCH2), **3.56 (s, 9** H, OMe), **7.10-7.53** (m, 20 H, aromatic). ³¹P{¹H} NMR (THF/acetone-d₆, 298 K): -22.4 (d, 2J(P,P) = **59** Hz, P), **51.4** (d, 2J(P,P) = **59** Hz, 2J(P,Hg) = **173** Hz, $P(Fe)$. ¹⁹⁹Hg NMR (Bruker WP 200 SY, CH_2Cl_2/C_6D_6 , δ relative to external HgMe₂), (312 K): -658 (t, ²J(P,Hg) = 180 Hz) (we thank P. Maltese and M. Strampfer for these data).

⁽¹⁵⁾ (a) Stephens, F. **S.** *J.* Chem. **SOC.,** *Dalton Trans.* 1972, **2257.** (b) **So**sinsky, B. A. S.; Shong, R. G.; Fitzgerald, B. J.; Norem, N.; O'Rourke, C. *Inorg. Chem.* **1983**, 22, 3124. (c) Alvarez, S.; Ferrer, M.; Reina, R.; Rossell, O.; Seco, M.; Solans, *X. J. Organomet. Chem.* **1989**, 377, 291.

⁽¹⁶⁾ (a) Schmidbaur, H.; Graf, W.; Miiller, G. *Angew. Chem., In?. Ed. Engl.* **1988, 27, 417.** (b) Jensen, M. *Ibid.* **1987, 26, 1098.**